Какой драйвер нужен для 10 ваттного светодиода. Драйверы для светодиодов: виды, характеристики и критерии выбора устройств. Другие варианты включения CPC9909

Неотъемлемой частью любой качественной лампы или светильника на светодиодах является драйвер. Применительно к освещению, под понятием «драйвер» следует понимать электронную схему, которая преобразует входное напряжение в стабилизированный ток заданной величины. Функциональность драйвера определяется шириной диапазона входных напряжений, возможностью регулировки выходных параметров, восприимчивостью к перепадам в питающей сети и эффективностью.

От перечисленных функций зависят качественные показатели светильника или лампы в целом, срок службы и стоимость. Все источники питания (ИП) для светодиодов условно разделяют на преобразователи линейного и импульсного типа. Линейные ИП могут иметь узел стабилизации по току или напряжению. Часто схемы такого типа радиолюбители конструируют своими руками на микросхеме LM317. Такое устройство легко собирается и имеет малую себестоимость. Но, ввиду очень низкого КПД и явного ограничения по мощности подключаемых светодиодов, перспективы развития линейных преобразователей ограничены.

Импульсные драйверы могут иметь КПД более 90% и высокую степень защиты от сетевых помех. Их мощность потребления в десятки раз меньше мощности, отдаваемой в нагрузку. Благодаря этому они могут изготавливаться в герметичном корпусе и не боятся перегрева.

Первые импульсные стабилизаторы имели сложное устройство без защиты от холостого хода. Затем они модернизировались и, в связи с бурным развитием светодиодных технологий, появились специализированные микросхемы с частотной и широтно-импульсной модуляцией.

Схема питания светодиодов на основе конденсаторного делителя

К сожалению, в конструкции дешёвых светодиодных ламп на 220В из Китая не предусмотрен ни линейный, ни импульсный стабилизатор. Мотивируясь исключительно низкой ценой готового изделия, китайская промышленность смогла максимально упростить схему питания. Называть её драйвером не корректно, так как здесь отсутствует какая-либо стабилизация. Из рисунка видно, что электрическая схема лампы рассчитана на работу от сети 220В. Переменное напряжение понижается RC-цепочкой и поступает на диодный мост. Затем выпрямленное напряжение частично сглаживается конденсатором и через токоограничивающий резистор поступает на светодиоды. Данная схема не имеет гальванической развязки, то есть все элементы постоянно находятся под высоким потенциалом.

В результате частые просадки сетевого напряжения приводит к мерцанию светодиодной лампы. И наоборот, завышенное напряжение сети вызывает необратимый процесс старения конденсатора с потерей ёмкости, а, иногда, становится причиной его разрыва. Стоит отметить, что еще одной, серьезной отрицательной стороной данной схемы является ускоренный процесс деградации светодиодов вследствие нестабильного тока питания.

Схема драйвера на CPC9909

Современные импульсные драйверы для светодиодных ламп имеют несложную схему, поэтому ее можно легко смастерить даже своими руками. Сегодня, для построения драйверов, производится ряд интегральных микросхем, специально предназначенных для управления мощными светодиодами. Чтобы упростить задачу любителям электронных схем, разработчики интегральных драйверов для светодиодов в документации приводят типичные схемы включения и расчеты компонентов обвязки.

Общие сведения

Американская компания Ixys наладила выпуск микросхемы CPC9909, предназначенной для управления светодиодными сборками и светодиодами высокой яркости. Драйвер на основе CPC9909 имеет небольшие габариты и не требует больших денежных вложений. ИМС CPC9909 изготавливается в планарном исполнении с 8 выводами (SOIC-8) и имеет встроенный стабилизатор напряжения.

Благодаря наличию стабилизатора рабочий диапазон входного напряжения составляет 12-550В от источника постоянного тока. Минимальное падение напряжения на светодиодах – 10% от напряжения питания. Поэтому CPC9909 идеальна для подключения высоковольтных светодиодов. ИМС прекрасно работает в температурном диапазоне от -55 до +85°C, а значит, пригодна для конструирования светодиодных ламп и светильников для наружного освещения.

Назначение выводов

Стоит отметить, что с помощью CPC9909 можно не только включать и выключать мощный светодиод, но и управлять его свечением. Чтобы узнать обо всех возможностях ИМС, рассмотрим назначение ее выводов.

  1. VIN. Предназначен для подачи напряжения питания.
  2. CS. Предназначен для подключения внешнего датчика тока (резистора), с помощью которого задаётся максимальный ток светодиода.
  3. GND. Общий вывод драйвера.
  4. GATE. Выход микросхемы. Подает на затвор силового транзистора модулированный сигнал.
  5. PWMD. Низкочастотный диммирующий вход.
  6. VDD. Выход для регулирования напряжения питания. В большинстве случаев подключается через конденсатор к общему проводу.
  7. LD. Предназначен для задания аналогового диммирования.
  8. RT. Предназначен для подключения время задающего резистора.

Схема и ее принцип работы

Типичное включение CPC9909 с питанием от сети 220В показано на рисунке. Схема способна управлять одним или несколькими мощными светодиодами или светодиодами типа High Brightness. Схему можно легко собрать своими руками даже в домашних условиях. Готовый драйвер не нуждается в наладке с учетом грамотного выбора внешних элементов и соблюдением правил их монтажа.
Драйвер для светодиодной лампы на 220В на базе CPC9909 работает по методу частотно-импульсной модуляции. Это означает, что время паузы является постоянной величиной (time-off=const). Переменное напряжение выпрямляется диодным мостом и сглаживается емкостным фильтром C1, C2. Затем оно поступает на вход VIN микросхемы и запускает процесс формирования импульсов тока на выходе GATE. Выходной ток микросхемы управляет силовым транзистором Q1. В момент открытого состояния транзистора (время импульса «time-on») ток нагрузки протекает по цепи: «+диодного моста» – LED – L – Q1 – R S – «-диодного моста».
За это время катушка индуктивности накапливает энергию, чтобы отдать её в нагрузку во время паузы. Когда транзистор закрывается, энергия дросселя обеспечивает ток нагрузки в цепи: L – D1 – LED – L.
Процесс носит циклический характер, в результате чего ток через светодиод имеет пилообразную форму. Наибольшее и наименьшее значение пилы зависит от индуктивности дросселя и рабочей частоты.
Частота импульсов определяется величиной сопротивления RT. Амплитуда импульсов зависит от сопротивления резистора RS. Стабилизация тока светодиода происходит путем сравнения внутреннего опорного напряжения ИМС с падением напряжения на R S . Предохранитель и терморезистор защищают схему от возможных аварийных режимов.

Расчет внешних элементов

Частотозадающий резистор

Длительность паузы выставляют внешним резистором R T и определяют по упрощенной формуле:

t паузы =R T /66000+0,8 (мкс).

В свою очередь время паузы связано с коэффициентом заполнения и частотой:

t паузы =(1-D)/f (с), где D – коэффициент заполнения, который представляет собой отношение времени импульса к периоду.

Датчик тока

Номинал сопротивления R S задает амплитудное значение тока через светодиод и рассчитывается по формуле: R S =U CS /(I LED +0.5*I L пульс), где U CS – калиброванное опорное напряжение, равное 0,25В;

I LED – ток через светодиод;

I L пульс – величина пульсаций тока нагрузки, которая не должна превышать 30%, то есть 0,3*I LED .

После преобразования формула примет вид: R S =0,25/1.15*I LED (Ом).

Мощность, рассеиваемая датчиком тока, определяется формулой: P S =R S *I LED *D (Вт).

К монтажу принимают резистор с запасом по мощности 1,5-2 раза.

Дроссель

Как известно, ток дросселя не может измениться скачком, нарастая за время импульса и убывая во время паузы. Задача радиолюбителя в том, чтобы подобрать катушку с индуктивностью, обеспечивающей компромисс между качеством выходного сигнала и её габаритами. Для этого вспомним об уровне пульсаций, который не должен превышать 30%. Тогда потребуется индуктивность номиналом:

L=(US LED *t паузы)/ I L пульс, где U LED – падение напряжения на светодиоде (-ах), взятое из графика ВАХ.

Фильтр питания

В цепи питания установлены два конденсатора: С1 – для сглаживания выпрямленного напряжения и С2 – для компенсации частотных помех. Так как CPC9909 работает в широком диапазоне входного напряжения, то в большой ёмкости электролитического С1 нет нужды. Достаточно будет 22 мкФ, но можно и больше. Емкость металлопленочного С2 для схемы такого типа стандартная – 0,1 мкФ. Оба конденсатора должны выдерживать напряжение не менее 400В.

Однако, производитель микросхемы настаивает на монтаже конденсаторов С1 и С2 с малым эквивалентным последовательным сопротивлением (ESR), чтобы избежать негативного влияния высокочастотных помех, возникающих при переключении драйвера.

Выпрямитель

Диодный мост выбирают, исходя из максимального прямого тока и обратного напряжения. Для эксплуатации в сети 220В его обратное напряжение должно быть не менее 600В. Расчетная величина прямого тока напрямую зависит от тока нагрузки и определяется как: I AC =(π*I LED)/2√2, А.

Полученное значение необходимо умножить на два для повышения надежности схемы.

Выбор остальных элементов схемы

Конденсатор C3, установленный в цепи питания микросхемы должен быть ёмкостью 0,1 мкФ с низким значением ESR, аналогично C1 и C2. Незадействованные выводы PWMD и LD также через C3 соединяются с общим проводом.

Транзистор Q1 и диод D1 работают в импульсном режиме. Поэтому выбор следует делать с учетом их частотных свойств. Только элементы с малым временем восстановления смогут сдержать негативное влияние переходных процессов в момент переключения на частоте около 100 кГц. Максимальный ток через Q1 и D1 равен амплитудному значению тока светодиода с учетом выбранного коэффициента заполнения: I Q1 =I D1 = D*I LED , А.

Напряжение, прикладываемое к Q1 и D1, носит импульсный характер, но не более, чем выпрямленное напряжение с учетом емкостного фильтра, то есть 280В. Выбор силовых элементов Q1 и D1 следует производить с запасом, умножая расчетные данные на два.

Предохранитель (fuse) защищает схему от аварийного короткого замыкания и должен длительно выдерживать максимальный ток нагрузки, в том числе импульсные помехи.

I FUSE =5*I AC , А.

Установка терморезистора RTH нужна для ограничения пускового тока драйвера, когда фильтрующий конденсатор разряжен. Своим сопротивлением RTH должен защитить диоды мостового выпрямителя от пробоя в начальные секунды работы.

R TH =(√2*220)/5*I AC , Ом.

Другие варианты включения CPC9909

Плавный пуск и аналоговое диммирование

При желании CPC9909 может обеспечить мягкое включение светодиода, когда его яркость будет постепенно нарастать. Плавный пуск реализуется при помощи двух постоянных резисторов, подключенных к выводу LD, как показано на рисунке. Данное решение позволяет продлить срок службы светодиода.

Также вывод LD позволяет реализовывать функцию аналогового диммирования. Для этого резистор 2,2 кОм заменяют переменным резистором 5,1 кОм, тем самым плавно изменяя потенциал на выводе LD.

Импульсное димирование

Управлять свечением светодиода можно путем подачи импульсов прямоугольной формы на вывод PWMD (pulse width modulation dimming). Для этого задействуют микроконтроллер или генератор импульсов с обязательным разделением через оптопару.

Кроме рассмотренного варианта драйвера для светодиодных ламп, существуют аналогичные схемные решения от других производителей: HV9910, HV9961, PT4115, NE555, RCD-24 и пр. Каждая из них имеет свои сильные и слабые места, но в целом, они успешно справляются с возложенной нагрузкой при сборке своими руками.

Читайте так же

Гарантией яркости свечения, эффективности и долговечности LED-источников является правильное питание, которое могут обеспечить специальные электронные устройства - драйверы для светодиодов. Они преобразуют напряжение переменного тока в сети 220В в напряжение постоянного тока заданного значения. Разобраться в том, какую функцию выполняют преобразователи и на что обратить внимание при их выборе, поможет анализ основных видов и характеристик устройств.

Основной функцией драйвера для светодиодов является обеспечение стабилизированного тока, проходящего через LED-прибор. Значение тока, протекающего через кристалл полупроводника, должно соответствовать паспортным параметрам светодиода. Это обеспечит устойчивость свечения кристалла и поможет избежать его преждевременной деградации. Кроме того при заданном токе падение напряжения будет соответствовать величине, необходимой для p-n перехода. Узнать соответствующее напряжение питания светодиода можно воспользовавшись вольт-амперной характеристикой.

При освещении жилых и офисных помещений светодиодными лампами и светильниками применяют драйверы, питание которых обеспечивается от сети переменного тока 220В. В автомобильном освещении (фары, ДХО и пр.), велосипедных фарах, портативных фонарях используют источники питания постоянного напряжения в диапазоне от 9 до 36В. Некоторые светодиоды небольшой мощности можно подключать без драйвера, но тогда в схему включения светодиода в сеть 220 вольт должен быть внесен резистор.

Напряжение драйвера на выходе указывается в интервале двух конечных значений, между которыми обеспечивается стабильное функционирование. Существуют адаптеры с интервалом от 3В до нескольких десятков. Чтобы запитать схему из 3-х последовательно соединенных светодиодов белого цвета, каждый из которых имеет мощность 1 Вт, потребуется драйвер с выходными значениями U – 9-12В, I – 350 мА. Падение напряжения для каждого кристалла составит около 3,3В, а в общей сумме 9,9В, что войдет в диапазон драйвера.

Основные характеристики преобразователей

Перед тем как купить драйвер для светодиодов, следует ознакомиться с основными характеристиками устройств. К ним относят напряжение на выходе, номинальный ток и мощность. Выходное напряжение преобразователя зависит от величины падения напряжения на LED-источнике, а также от способа подключения и количества светодиодов в схеме. Ток находится в зависимости от мощности и яркости излучающих диодов. Драйвер должен обеспечить светодиодам такой ток, который необходим им для поддержки требуемой яркости.

Одной из важных характеристик драйвера считается мощность, которую прибор выдает в виде нагрузки. На выбор мощности драйвера влияет мощность каждого LED-прибора, общее количество и цвет свечения светодиодов. Алгоритм расчета мощности состоит в том, что максимальная мощность устройства не должна быть ниже потребления всех светодиодов:

P = P(led) × n ,

где P(led) – мощность единичного LED-источника, а n - количество светодиодов.

Кроме того должно выполняться обязательное условие, при котором бы обеспечивался запас мощности в пределах 25-30%. Таким образом значение максимальной мощности должно быть не меньше значения (1,3 х P).

Следует также брать во внимание цветовые характеристики светодиодов. Ведь различные по цвету полупроводниковые кристаллы имеют разную величину падения напряжения при прохождении через них тока одинаковой силы. Так падение напряжения у красного светодиода при токе 350 мА составляет 1,9-2,4В, тогда среднее значение его мощности будет равно 0,75 Вт. У аналога зеленого цвета величина падения напряжения находится в пределах от 3,3 до 3,9В и при таком же токе мощность составит уже 1,25 Вт. Значит к драйверу для светодиодов 12В можно подсоединить 16 красных LED-источников или 9 зеленых.

Полезный совет! При выборе драйвера для светодиодов специалисты советуют не пренебрегать максимальным значением мощности прибора.

Какими бывают драйверы для светодиодов по типу устройства

Драйверы для светодиодов классифицируют по типу устройства на линейные и импульсные. Структура и типовая схема драйвера для светодиодов линейного типа представляет собой генератор тока на транзисторе с р-каналом. Такие устройства обеспечивают плавную стабилизацию тока при условии неустойчивого напряжения на входном канале. Они являются простыми и дешевыми устройствами, однако отличаются низкой эффективностью, выделяют при работе много тепла и не могут быть использованы как драйвера для мощных светодиодов.

Импульсные устройства создают в выходном канале ряд высокочастотных импульсов. Их работа основана на принципе ШИМ (широтно-импульсной модуляции), когда средняя величина тока на выходе обуславливается коэффициентом заполнения, т.е. отношением длительности импульса к числу его повторений. Изменение величины среднего выходного тока происходит вследствие того, что частота импульсов остается неизменной, а коэффициент заполнения изменяется от 10-80%.

Благодаря высокому КПД преобразований (до 95%) и компактности устройств, они нашли широкое применение для портативных светодиодных конструкций. Кроме того, эффективность устройств положительно сказывается на длительности функционирования автономных приборов питания. Преобразователи импульсного типа имеют компактные размеры и отличаются обширным диапазоном входных напряжений. Недостатком этих устройств является высокий уровень электромагнитных помех.

Полезный совет! Приобретать LED-драйвер следует на этапе выбора светодиодных источников, предварительно определившись со схемой светодиодов от 220 вольт.

Перед тем как подобрать драйвер для светодиодов, необходимо знать условия его функционирования и место размещения светодиодных приборов. Широтно-импульсные драйверы, в основе которых лежит одна микросхема, имеют миниатюрные размеры и рассчитаны на питание от автономных низковольтных источников. Основное применение этих устройств – тюнинг автомобилей и светодиодная подсветка. Однако ввиду использования упрощенной электронной схемы качество таких преобразователей несколько ниже.

Диммируемые драйверы для светодиодов

Современные драйверы для светодиодов совместимы с устройствами регулирования яркости свечения полупроводниковых приборов. Использование диммируемых драйверов позволяет управлять уровнем освещенности в помещениях: снижать интенсивность свечения в дневное время, подчеркивать или скрывать отдельные элементы в интерьере, зонировать пространство. Это, в свою очередь, дает возможность не только рационально использовать электроэнергию, но и экономить ресурс светодиодного источника света.

Диммируемые драйверы бывают двух типов. Одни подсоединяются между блоком питания и LED-источниками. Такие устройства управляют энергией, поступающей от источника питания к светодиодам. В основе таких устройств используется ШИМ-управление, при котором энергия поступает к нагрузке в виде импульсов. Длительность импульсов определяет количество энергии от минимального до максимального значения. Драйверы такого типа применяются по большей части для светодиодных модулей с фиксированным напряжением, таких как светодиодные ленты, бегущие строки и др.

Управление драйвером осуществляется с помощью или ШИМ

Диммируемые преобразователи второго типа управляют непосредственно источником питания. Принцип их работы заключается как в ШИМ-регулировании, так и в управлении величиной протекающего через светодиоды тока. Диммируемые драйверы этого типа используются для LED-приборов со стабилизированным током. Стоит отметить, что при управлении светодиодами посредством ШИМ-регулирования наблюдаются негативно влияющие на зрение эффекты.

Сравнивая эти два метода регулирования, стоит отметить, что при регулировании величины тока через LED-источники наблюдается не только изменение яркости свечения, но и изменение цвета свечения. Так, белые светодиоды при меньшем токе излучают желтоватый свет, а при увеличении – светятся синим. При управлении светодиодами посредством ШИМ-регулирования наблюдаются негативно влияющие на зрение эффекты и высокий уровень электромагнитных помех. В связи с этим ШИМ-управление используется достаточно редко в отличие от регулирования тока.

Схемы драйверов для светодиодов

Многие производители выпускают для светодиодов микросхемы драйверов, позволяющие запитывать источники от пониженного напряжения. Все существующие драйверы делят на простые, выполненные на базе от 1-3 транзисторов и более сложные с использованием специальных микросхем с широтно-импульсной модуляцией.

Компания ON Semiconductor предлагает в качестве основы для драйверов широкий выбор микросхем. Они отличаются приемлемой стоимостью, отличной эффективностью преобразования, экономичностью и низким уровнем электромагнитных импульсов. Производителем представлен драйвер импульсного типа UC3845 с величиной тока на выходе до 1А. На такой микросхеме можно реализовать схему драйвера для светодиода 10W.

Электронные компоненты HV9910 (Supertex) являются популярной микросхемой для драйверов, благодаря простому схемному разрешению и невысокой цене. Она имеет встроенный регулятор напряжения и выводы для осуществления управления яркостью, а также вывод для программирования частоты переключений. Выходное значение тока составляет до 0,01А. На данной микросхеме возможно воплотить простой драйвер для светодиодов.

На базе микросхемы UCC28810 (пр-во компании Texas Instruments) можно создать схему драйвера для мощных светодиодов. В такой схеме LED-драйвера может создаваться выходное напряжение величиной 70-85В для светодиодных модулей, состоящих из 28 LED-источников током 3 А.

Полезный совет! Если вы планируете купить сверхяркие светодиоды мощностью 10 Вт, для конструкций из них можно использовать импульсный драйвер на микросхеме UCC28810.

Компания Clare предлагает создание простого драйвера импульсного типа на основе микросхемы CPC 9909. Она включает контроллер преобразователя, размещенного в компактном корпусе. За счет встроенного стабилизатора напряжения допускается питание преобразователя от напряжения 8-550В. Микросхема CPC 9909 позволяет эксплуатировать драйвер в условиях широкого разброса температурных режимов от -50 до 80°С.

Как подобрать драйвер для светодиодов

На рынке представлен широкий ассортимент драйверов для светодиодов от разных производителей. Многие из них, особенно китайского производства, отличаются низкой ценой. Однако покупать такие устройства не всегда выгодно, так как большинство из них не соответствует заявленным характеристикам. Кроме того такие драйверы не сопровождаются гарантией, а в случае обнаружения брака их нельзя вернуть или заменить на качественные.

Так существует вероятность приобретения драйвера, заявленная мощность которого составляет 50 W. Однако на деле оказывается, что эта характеристика имеет непостоянный характер и такая мощность является лишь кратковременной. В реальности же такое устройство будет работать как LED-driver 30W или максимум 40W. Так же может оказаться, что в начинке не будет хватать некоторых компонентов, отвечающих за устойчивое функционирование драйвера. Кроме того могут применяться компоненты низкого качества и с небольшим сроком службы, что является по сути браком.

При покупке стоит обращать внимание на указание бренда изделия. На качественном товаре обязательно будет указан изготовитель, который предоставит гарантию и будет готов отвечать за свою продукцию. Следует отметить, что и срок службы драйверов от проверенных производителей будет гораздо больше. Ниже приведено ориентировочное время работы драйверов в зависимости от изготовителя:

  • драйвер от сомнительных производителей – не более 20 тыс. часов;
  • устройства среднего качества – около 50 тыс. часов;
  • преобразователь от проверенной фирмы-изготовителя с использованием качественных компонентов – свыше 70 тыс. часов.

Полезный совет! Какого качества будет светодиодный драйвер – выбирать вам. Однако следует заметить, что особенно важно приобретать фирменный преобразователь, если речь идет о применении его для прожекторов из светодиодов и мощных светильников.

Расчет драйверов для светодиодов

Чтобы определить напряжение на выходе светодиодного драйвера, необходимо рассчитать отношение мощности (Вт) к значению тока (А). К примеру, драйвер имеет следующие характеристики: мощность 3 Вт и ток 0,3 А. Расчетное отношение составляет 10В. Таким образом, это будет максимальная величина выходного напряжения данного преобразователя.

Статья по теме:


Типы. Схемы подключения LED-источников. Расчет сопротивления для светодиодов. Проверка светодиода мультиметром. LED-конструкции своими руками.

Если необходимо подключить 3 LED-источника, ток каждого из которых составляет 0,3 мА при напряжении питания 3В. Подключая к светодиодному драйверу один из приборов, то выходное напряжение будет равно 3В и ток 0,3 А. Собрав последовательно два LED-источника, выходное напряжение будет равно 6В и ток 0,3 А. Добавив в последовательную цепочку третий светодиод, получим 9В и 0,3 А. При параллельном соединении 0,3 А одинаково распределятся между светодиодами по 0,1 А. Подключая светодиоды к устройству на 0,3 А при значении тока 0,7, им достанется всего 0,3 А.

Таков алгоритм функционирования светодиодных драйверов. Они выдают такое количество тока, на которое они рассчитаны. Способ подключения LED-приборов в этом случае не играет роли. Есть модели драйверов, предполагающие любое количество подключаемых к ним светодиодов. Но тогда существует ограничение по мощности LED-источников: она не должна превышать мощность самого драйвера. Выпускаются драйверы, рассчитанные на определенное число подключаемых светодиодов К ним разрешается подключить меньшее количество светодиодов. Но такие драйверы имеют низкую эффективность, в отличие от устройств, рассчитанных на конкретное количество LED-приборов.

Следует отметить, что у драйверов, рассчитанных на фиксированное количество излучающих диодов, предусмотрена защита от аварийных ситуаций. Такие преобразователи некорректно работают, если к ним подключить меньшее число светодиодов: они будут мерцать или вообще не будут светиться. Таким образом, если подключить к драйверу напряжение без соответствующей нагрузки, он будет работать нестабильно.

Где купить драйверы для светодиодов

Купить LED-driver можно в специализированных точках по продаже радиодеталей. Кроме того гораздо удобней ознакомиться с продукцией и заказать необходимое изделие, используя каталоги соответствующих сайтов. Помимо этого в интернет-магазинах можно приобрести не только преобразователи, а также приборы светодиодного освещения и сопутствующую продукцию: , устройства управления, средства подключения, электронные компоненты для ремонта и сборки драйвера для светодиодов своими руками.

Реализующими компаниями представлен огромный ассортимент драйверов для светодиодов, технические характеристики и цены которых можно увидеть в прайсах. Как правило цены на продукцию носят ориентировочный характер и уточняются при заказе у менеджера проекта. В ассортименте имеются преобразователи различной мощности и степени защиты, применяемые для наружного и внутреннего освещения, а также для подсветки и тюнинга автомобилей.

Выбирая драйвер следует учитывать условия его использования и потребляемую мощность светодиодной конструкции. Поэтому приобретать драйвер необходимо перед покупкой светодиодов. Так, прежде чем купить драйвер для светодиодов 12 вольт, необходимо принять во внимание, что он должен иметь запас мощности около 25-30%. Это нужно для того, чтобы уменьшить риск повреждения или полного выхода из строя прибора при коротком замыкании или перепадах напряжения в сети. Стоимость преобразователя зависит от количества приобретаемых устройств, формы оплаты и сроков доставки.

В таблице приведены основные параметры и размеры стабилизаторов напряжения 12 вольт для светодиодов с указанием их ориентировочной цены:

Модификация LD DC/AC 12 V Габариты, мм (в/ш/г) Выходной ток, A Мощность, W Цена, руб.
1x1W 3-4VDC 0.3A MR11 8/25/12 0,3 1х1 73
3x1W 9-12VDC 0.3A MR11 8/25/12 0,3 3х1 114
3x1W 9-12VDC 0.3A MR16 12/28/18 0,3 3х1 35
5-7x1W 15-24VDC 0.3A 12/14/14 0,3 5-7х1 80
10W 21-40V 0.3A AR111 21/30 0,3 10 338
12W 21-40V 0.3A AR11 18/30/22 0,3 12 321
3x2W 9-12VDC 0.4A MR16 12/28/18 0,4 3х2 18
3x2W 9-12VDC 0.45A 12/14/14 0,45 3х2 54

Изготовление драйверов для светодиодов своими руками

Используя готовые микросхемы, радиолюбители могут самостоятельно собирать драйверы для светодиодов различной мощности. Для этого необходимо уметь читать электрические схемы и иметь навыки работы с паяльником. Для примера можно рассмотреть несколько вариантов LED-драйверов своими руками для светодиодов.

Схему драйвера для светодиода 3W можно реализовать на основе микросхемы PT4115 китайского производства PowTech. Микросхема может быть применена для питания LED-приборов свыше 1W и включает в себя блоки управления, которые имеют на выходе достаточно мощный транзистор. Драйвер на базе PT4115 обладает высокой эффективностью и имеет минимальное количество компонентов обвязки.

Обзор PT4115 и технические параметры ее компонентов:

  • функция управление яркостью свечения (диммирование);
  • входное напряжение – 6-30В;
  • значение выходного тока – 1,2 А;
  • отклонение стабилизации тока до 5%;
  • предохранение от разрывов нагрузки;
  • наличие выводов для диммирования;
  • эффективность – до 97%.

Микросхема имеет следующие выводы:

  • для выходного переключателя – SW;
  • для сигнального и питающего участка схемы – GND;
  • для регулирования яркости – DIM;
  • входной датчик тока – CSN;
  • напряжение питания – VIN;

Схема драйвера для светодиодов своими руками на базе PT4115

Схемы драйвера для питания LED-приборов рассеивающей мощностью 3 Вт могут быть исполнены в двух вариантах. Первый предполагает наличие источника питания напряжением от 6 до 30В. В другой схеме предусмотрено питание от источника переменного тока напряжением от 12 до 18В. В этом случае в схему введен диодный мост, на выходе которого устанавливается конденсатор. Он способствует сглаживанию колебаний напряжения, емкость его составляет 1000 мкФ.

Для первой и второй схемы особое значение имеет конденсатор (CIN): этот компонент призван уменьшить пульсацию и компенсировать накопленную катушкой индуктивности энергию при закрытии MOP-транзистора. В отсутствие конденсатора вся энергия индуктивности через полупроводниковый диод ДШБ (D) попадет на вывод напряжения питания (VIN) и станет причиной пробоя микросхемы относительно питания.

Полезный совет! Следует обязательно учитывать, что подключение драйвера для светодиодов в отсутствие входного конденсатора не разрешается.

Учитывая количество и то, сколько потребляют светодиоды, рассчитывается индуктивность (L). В схеме светодиодного драйвера следует подбирать индуктивность, величина которой 68-220 мкГн. Об этом свидетельствуют данные технической документации. Можно допустить небольшое увеличение значения L, однако следует учесть, что тогда снизится КПД схемы в целом.

Как только подается напряжение, величина тока при прохождении его через резистор RS (работает как датчик тока) и L будет нулевая. Далее, CS comparator анализирует уровни потенциалов, находящихся до резистора и после него – в результате появляется высокая концентрация на выходе. Ток, идущий в нагрузку, нарастает до определенного значения, контролируемого RS. Ток увеличивается в зависимости от значения индуктивности и от величины напряжения.

Сборка компонентов драйвера

Компоненты обвязки микросхемы РТ 4115 подбираются с учетом указаний производителя. Для CIN следует применять низкоимпедансный конденсатор (конденсатор с низким ESR), так как применение других аналогов негативно скажется на эффективности драйвера. Если устройство будет запитано от блока со стабилизированным током, на входе понадобится один конденсатор емкостью от 4,7 мкФ. Его рекомендуется разместить рядом с микросхемой. Если ток переменный, потребуется ввести твердотельный танталовый конденсатор, емкость которого не ниже 100 мкФ.

В схему включения для светодиодов 3 Вт необходимо установить катушку индуктивности на 68 мкГн. Она должна располагаться как можно ближе к выводу SW. Можно сделать катушку самостоятельно. Для этого потребуется кольцо из вышедшего из строя компьютера и обмоточный провод (ПЭЛ-0,35). В качестве диода D можно использовать диод FR 103. Его параметры: емкость 15 пФ, время восстановления 150 нс, температура от -65 до 150°С. Он может справиться с импульсами тока до 30 А.

Минимальная величина резистора RS в схеме светодиодного драйвера составляет 0,082 Ом, ток – 1,2 А. Чтобы рассчитать резистор, необходимо использовать значение тока, необходимого для светодиода. Ниже приведена формула для расчета:

RS = 0,1 / I ,

где I – номинальная величина тока LED-источника.

Величина RS в схеме светодиодного драйвера составляет 0,13 Ом, соответственно значение тока – 780 мА. Если такой резистор не удается отыскать, можно использовать несколько низкоомных компонентов, используя при расчете формулу сопротивления для параллельного и последовательного включения.

Компоновка драйвера для светодиода 10 Ватт своими руками

Собрать драйвер для мощного светодиода можно самостоятельно, используя электронные платы от вышедших из строя люминесцентных ламп. Чаще всего в таких светильниках перегорают лампы. Электронная плата остается рабочей, что позволяет использовать ее компоненты для самодельных блоков питания, драйверов и других устройств. Для работы могут понадобиться транзисторы, конденсаторы, диоды, катушки индуктивности (дроссели).

Неисправную лампу необходимо аккуратно разобрать с помощью отвертки. Чтобы сделать драйвер для светодиода 10 Вт, следует воспользоваться люминесцентной лампой, мощность которой 20 Вт. Это необходимо для того, чтобы дроссель мог с запасом выдержать нагрузку. Для более мощной лампы следует либо подбирать соответствующую плату, либо заменить сам дроссель на аналог с большим сердечником. Для LED-источников с меньшей мощностью можно отрегулировать число витков обмотки.

Далее поверх первичных витков обмотки необходимо сделать 20 витков провода и с помощью паяльника соединить эту обмотку с выпрямительным диодным мостом. После этого следует подать напряжение от сети 220В и измерить выходное напряжение на выпрямителе. Его значение составило 9,7В. LED-источник через амперметр потребляет 0,83 А. Номинал этого светодиода 900 мА, однако чтобы заниженное потребление тока позволит увеличить его ресурс. Сборка диодного моста осуществляется путем навесного монтажа.

Новую плату и диодный мост можно разместить в подставке от старого настольного светильника. Таким образом, светодиодный драйвер можно собрать самостоятельно из имеющихся в наличии радиодеталей от вышедших из строя устройств.

В силу того что светодиоды достаточно требовательны к источникам питания, необходимо правильно подбирать к ним драйвер. Если преобразователь выбран правильно, можно быть уверенным, что параметры LED-источников не ухудшатся и светодиоды прослужат положенный им срок.

Широкое распространение светодиодов повлекло за собой массовое производство блоков питания для них. Такие блоки называются драйверами. Основной их особенностью является то, что они способны стабильно поддерживать на выходе заданный ток. Другими словами, драйвер для светодиодов (LED) – это источник тока для их питания.

Назначение

Поскольку светодиод — это полупроводниковые элементы, ключевой характеристикой, определяющей яркость их свечения, является не напряжение, а ток. Чтобы они гарантированно отработали заявленное количество часов, необходим драйвер, — он стабилизирует ток, протекающий через цепь светодиодов. Возможно использование маломощных светоизлучающих диодов и без драйвера, в этом случае его роль выполняет резистор.

Применение

Драйверы применяются как при питании светодиода от сети 220В, так и от источников постоянного напряжения 9-36 В. Первые используются при освещении помещений светодиодными лампами и лентами, вторые чаще встречаются в автомобилях, велосипедных фарах, переносных фонарях и т.д.

Принцип работы

Как уже было сказано, драйвер – это источник тока. Его отличия от источника напряжения проиллюстрированы ниже.

Источник напряжения создает на своем выходе некоторое напряжение, в идеале не зависящее от нагрузки.

Например, если подключить к источнику напряжением 12 В резистор 40 Ом, через него пойдет ток 300 мА.

Если подключить параллельно два резистора, суммарный ток составит уже 600 мА при том же напряжении.

Драйвер же поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться.

Подключим так же резистор 40 Ом к драйверу 300 мА.

Драйвер создаст на резисторе падение напряжения 12 В.

Если подключить параллельно два резистора, ток по-прежнему будет 300 мА, а напряжение упадет до 6 В:

Таким образом, идеальный драйвер способен обеспечить нагрузке номинальный ток вне зависимости от падения напряжения. То есть светодиод с падением напряжения 2 В и током 300 мА будет гореть так же ярко, как и светодиод напряжением 3 В и током 300 мА.

Основные характеристики

При подборе нужно учитывать три основных параметра: выходное напряжение, ток и потребляемая нагрузкой мощность.

Напряжение на выходе драйвера зависит от нескольких факторов:

  • падение напряжения на светодиоде;
  • количество светодиодов;
  • способ подключения.

Ток на выходе драйвера определяется характеристиками светодиодов и зависит от следующих параметров:

  • мощность светодиодов;
  • яркость.

Мощность светодиодов влияет на потребляемый ими ток, который может варьироваться в зависимости от требуемой яркости. Драйвер должен обеспечить им этот ток.

Мощность нагрузки зависит от:

  • мощности каждого светодиода;
  • их количества;
  • цвета.

В общем случае потребляемую мощность можно рассчитать как

где Pled — мощность светодиода,

N — количество подключаемых светодиодов.

Максимальная мощность драйвера не должна быть меньше.

Стоит учесть, что для стабильной работы драйвера и предотвращения выхода его из строя следует обеспечить запас по мощности хотя бы 20-30%. То есть должно выполняться следующее соотношение:

где Pmax — максимальная мощность драйвера.

Кроме мощности и количества светодиодов, мощность нагрузки зависит еще от их цвета. Светодиоды разных цветов имеют разное падение напряжения при одинаковом токе. Например, красный светодиод XP-E обладает падением напряжения 1.9-2.4 В при токе 350 мА. Средняя потребляемая им мощность таким образом составляет около 750 мВт.

У XP-E зеленого цвета падение 3.3-3.9 В при том же токе, и его средняя мощность составит уже около 1.25 Вт. То есть драйвером, рассчитанным на 10 ватт, можно питать либо 12-13 красных светодиодов, либо 7-8 зеленых.

Как подобрать драйвер для светодиодов. Способы подключения LED

Допустим, имеется 6 светодиодов с падением напряжения 2 В и током 300 мА. Подключить их можно различными способами, и в каждом случае потребуется драйвер с определенными параметрами:


Соединять таким образом параллельно 3 и более светодиодов недопустимо, так как при этом через них может пойти слишком большой ток, в результате чего они быстро выйдут из строя.

Обратите внимание, что во всех случаях мощность драйвера составляет 3.6 Вт и не зависит от способа подключения нагрузки.

Таким образом, целесообразнее выбирать драйвер для светодиодов уже на этапе закупки последних, предварительно определив схему подключения. Если же сначала приобрести сами светодиоды, а потом подбирать к ним драйвер, это может оказаться нелегкой задачей, поскольку вероятность того, что Вы найдете именно тот источник питания, который сможет обеспечить работу именно этого количества светодиодов, включенных по конкретной схеме, невелика.

Виды

В общем случае драйверы для светодиодов можно разделить на две категории: линейные и импульсные.

У линейного выходом служит генератор тока. Он обеспечивает стабилизацию выходного тока при нестабильном входном напряжении; причем подстройка происходит плавно, не создавая высокочастотных электромагнитных помех. Они просты и дешевы, но невысокий КПД (менее 80%) ограничивает сферу их применения маломощными светодиодами и лентами.

Импульсные представляют собой устройства, создающие на выходе серию высокочастотных импульсов тока.

Обычно они работают по принципу широтно-импульсной модуляции (ШИМ), то есть среднее значение выходного тока определяется отношением ширины импульсов к периоду их следования (эта величина называется коэффициентом заполнения).

На диаграмме выше показан принцип работы ШИМ-драйвера: частота импульсов остается постоянной, но изменяется коэффициент заполнения от 10% до 80%. Это ведет к изменению среднего значения тока I cp на выходе.

Такие драйверы получили широкое распространение благодаря компактности и высокому КПД (около 95%). Основным недостатком является больший по сравнению с линейными уровень электромагнитных помех.

Светодиодный драйвер на 220 В

Для включения в сеть 220 В выпускаются как линейные, так и импульсные. Существуют драйверы с гальванической развязкой от сети и без нее. Основными преимуществами первых являются высокий КПД, надежность и безопасность.

Без гальванической развязки обычно дешевле, но менее надежны и требуют осторожности при подключении, поскольку есть вероятность поражения током.

Китайские драйверы

Востребованность драйверов для светодиодов способствует их массовому производству в Китае. Эти устройства представляют собой импульсные источники тока, обычно на 350-700 мА, часто не имеющие корпуса.

Китайский драйвер для светодиода 3w

Основные их достоинства – низкая цена и наличие гальванической развязки. Недостатки следующие:

  • низкая надежность из-за использования дешевых схемных решений;
  • отсутствие защиты от перегрева и колебаний в сети;
  • высокий уровень радиопомех;
  • высокий уровень пульсаций на выходе;
  • недолговечность.

Срок службы

Обычно срок службы драйвера меньше, чем у оптической части – производители дают гарантию на 30000 часов работы. Это связано с такими факторами, как:

  • нестабильность сетевого напряжения;
  • перепады температур;
  • уровень влажности;
  • загруженность драйвера.

Самым слабым звеном светодиодного драйвера являются сглаживающие конденсаторы, которые имеют тенденцию к испарению электролита, особенно в условиях повышенной влажности и нестабильного питающего напряжения. В результате уровень пульсаций на выходе драйвера повышается, что негативно сказывается на работе светодиодов.

Также на срок службы влияет неполная загруженность драйвера. То есть если он, рассчитан на 150 Вт, а работает на нагрузку 70 Вт, половина его мощности возвращается в сеть, вызывая ее перегрузку. Это провоцирует частые сбои питания. Рекомендуем почитать про .

Схемы драйверов (микросхемы) для светодиодов

Многие производители выпускают специализированные микросхемы драйверов. Рассмотрим некоторые из них.

ON Semiconductor UC3845 – импульсный драйвер с выходным током до 1А. Схема драйвера для светодиода 10w на этой микросхеме приведена ниже.

Supertex HV9910 – очень распространенная микросхема импульсного драйвера. Ток на выходе не превышает 10 мА, не имеет гальванической развязки.

Простой драйвер тока на этой микросхеме представлен ниже.

Texas Instruments UCC28810. Сетевой импульсный драйвер, имеет возможность организовать гальваническую развязку. Выходной ток до 750 мА.

Еще одна микросхема этой фирмы, — драйвер для питания мощных светодиодов LM3404HV — описывается в этом видео:

Устройство работает по принципу резонансного преобразователя типа Buck Converter, то есть функция поддержания требуемого тока здесь частично возложена на резонансную цепь в виде катушки L1 и диода Шоттки D1 (типовая схема приведена ниже). Также имеется возможность задания частоты коммутации подбором резистора R ON .

Maxim MAX16800 – линейная микросхема, работает при малых напряжениях, поэтому на ней можно построить драйвер 12 вольт. Выходной ток – до 350 мА, поэтому может использоваться как драйвер питания для мощного светодиода, фонарика, и т.д. Есть возможность диммирования. Типовая схема и структура представлены ниже.

Заключение

Светодиоды гораздо более требовательны к источнику питания, чем другие источники света. Например, превышение тока на 20% для люминесцентной лампы не повлечет за собой серьезного ухудшения характеристик, для светодиодов же срок службы сократится в несколько раз. Поэтому выбирать драйвер для светодиодов следует особенно тщательно.

После почти дух месяцев ожидания (наверно сказались новогодние праздники) получил драйверы для светодиодов c AliExpress. Пока они были в пути ради эксперимента сделал самодельный драйвер из электронной платы энергосберегайки. Ну а теперь надо испытать заводской драйвер.
Привожу как скудновато выглядят характеристики драйвера на сайте.


Конечно выбирать драйвер по таким описаниям и фотографиям не очень удобно, ну охота пуще неволи.
И фотография на сайте немного расходится с оригиналом –у полученного драйвера двухсторонний монтаж. Я думаю схемотехника не сильно отличается. Главное чтобы параметры соответствовали.
Фото с сайта.

Фото полученного драйвера.




Монтаж элементов аккуратный. Всё промыто, пропаяно. Хотел посмотреть что за микросхема 84YL5JETE, но в сети ничего не нашел. Скорей всего это типовой импульсный преобразователь только китайцы дали свое обозначение.

Подключил драйвер к 10 Вт светодиоду на радиаторе 200кв.см, благо попал под руку, от старого телевизора.


Драйвер запускается сразу, держит стабильно ток 0,78-0,8А при напряжении 10,06-10,1В. Температура светодиода 40 градусов. После включения на 1 час показания не изменились. Такой режим меня устраивает – не хочу сокращать ресурс светодиода. Для данного светодиода максимальный ток потребления 0,9А.


Потом взял и подключил параллельно еще один такой же светодиод. Драйвер потянул, но ток потребления теперь каждого светодиода будет 0,4А(и яркость соответсвенно уменьшилась) Такое включение применять нельзя- просто было интересно потянет ли драйвер. Нагрев самого драйвера за час работы нормальный-прикоснулся к трансформатору примерно 50 градусов.


Пульсации выходного напряжения замерить было не чем, но на камеру они заметны. Устранил в момент подключив дополнительный электролитический конденсатор 100мкФх30В к выходным проводам драйвера.
Из недостатков этого драйвера –цена (хотелось бы и подешевле, но пока не нашел на АлиЭкспресс дешевле) и наличие пульсаций (хотя это легко устранить копеечным конденсатором).
Кому интересно тест этого драйвера можно посмотреть на
Всем желаю удачи!

Планирую купить +26 Добавить в избранное Обзор понравился +26 +53

Всем привет. Обзор 10вт драйвера светодиода, отличительной особенностью которого является сильная пульсация выходного напряжения, т.к. на входе преобразователя отсутствует электролитический конденсатор. Желательна доработка.

Почему я выбрал именно эти 10-ваттные драйверы, а не другие из десятков предложенных в интернете вариантов, я за прошедшие с момента заказа полтора месяца уже не помню. Никакого обзора данной мелочи делать не планировал, но после того, как получил посылку, решил предостеречь покупателей от покупки подобного драйвера.

Похожий драйвер мощностью 20вт уже рассматривался на MYsku в обзоре , схема тоже схожа, правда в моём случае применена микросхема со встроенным силовым ключом. Уменьшения уровня пульсаций выходного напряжения автор добился установкой дополнительного электролитического конденсатора по выходу сетевого выпрямителя.

Когда я собирался испытать полученные драйверы, мне сразу бросилось в глаза, что отсутствует электролитический конденсатор по выходу сетевого выпрямителя. На выходе драйвера установлен электролитический конденсатор на 50в 100мкф, также в схеме есть небольшой конденсатор по питанию микросхемы преобразователя.

Привожу фотографии драйвера:














Ёмкость плёночного конденсатора на выходе сетевого выпрямителя составляет 0,22мкф, но этот конденсатор предназначен скорее для устранения высокочастотной пульсации в цепях питания преобразователя, уменьшая испускаемые драйвером помехи, чем для фильтрации пульсаций частотой 100Гц выпрямленного сетевого напряжения.

Это напомнило мне схему электронного трансформатора для питания 12-вольтовых галогенных ламп. Такие трансформаторы продаются в электротоварах и имеют мощность от 40 до 150вт, и достаточно недороги. Построены они на простейшей двухтактной автогенераторной схеме, и также не имеют сколь-либо значительного фильтрующего конденсатора по выходу сетевого выпрямителя. Таким образом, при переходе сетевого напряжения через ноль, напряжение на выходе сетевого выпрямителя снижается вплоть до срыва автогенерации, и напряжение на выходе электронного трансформатора кратковременно исчезает. Но для галогенных ламп, обладающих значительной инерционностью, не имеет значения, что высокочастотное выходное напряжение промодулировано немного искажёнными половинками синусоиды с частотой 100гц. Вот примерная схема электронного транса:

Применяя электронный транс в своих поделках, и стремясь уменьшить уровень пульсаций на выходе мостового выпрямителя, которым я нагружал выход электронного трансформатора, я пытался подключить на выход сетевого выпрямителя дополнительный электролитический конденсатор ёмкостью в 10-20мкф. Но эта затея провалилась, дополнительный конденсатор отрицательно влиял на работу этой простой схемы, автогенератор выходил из под контроля, и сначала сгорал защитный резистор, а потом и предохранитель, который я ставил вместо резистора. Не знаю, отчего это происходило, то ли с увеличением конденсатора увеличилось среднее значение напряжения питания схемы преобразователя, то ли для данной схемы важна была кратковременная просадка напряжения питания до срыва автогенерации, то ли возникал ещё какой-либо нештатный режим, например однотактная автогенерация… Впрочем, тогда я не стал глубоко копать, а сейчас, видя схему, понимаю, что надо было попутно корректировать цепочку R2, R3, D6…

И вот я больше чем через 10 лет встречаю совершенно другое, но в то же время похожее схемное решение, в котором ради экономии отсутствует электролитический конденсатор по выходу сетевого выпрямителя… Забавно… Правда, включение дополнительного электролитического конденсатора не привело к фейерверкам, как когда-то в случае с электронным трансформатором, что очень радует.

Установленный на выходе драйвера конденсатор ёмкостью 100мкф не способен при токе нагрузки в 800-900мА сколь либо существенно сгладить пульсации частотой 100гц. Также автор упомянутого выше обзора указывает на незначительное уменьшение величины пульсаций светового потока при многократном увеличении ёмкости конденсатора на выходе драйвера, зато дополнительный конденсатор на выходе сетевого выпрямителя уменьшил пульсации в 10 раз. Поэтому я сразу был настроен на установку дополнительного конденсатора.

Кстати, измеренный автором упомянутого обзора уровень пульсаций светового потока очень мал для такой казалось бы «ужасной» схемы, и заслуга в этом как схемы драйвера с значительным запасом по минимальному входному напряжению, так и самих светодиодов. Если вместо такой нелинейной нагрузки, как светодиоды, подключить к драйверу, например, лампочку или резистивную нагрузку, уровень пульсаций выходного напряжения становится в разы больше, не 10%, как уровень пульсаций светового потока, а порядка 30-50% и сильно зависит от сетевого напряжения и тока нагрузки. Электронный трансформатор с автогенератором имеет такие же пульсации на выходе (все 100%), как и на входе. Импульсный же преобразователь с ШИМом при значительных пульсациях на входе выдаёт на выход куда более стабильное напряжение, со значительно меньшим провалом в момент, когда напряжение на выходе выпрямителя падает ниже минимально допустимого для схемы (порядка 80в). Регулировал входное напряжение драйвера ЛАТРом, уровень пульсаций резко увеличивается при снижении напряжения.

Самое первое включение драйвера я провёл без дополнительного конденсатора, в первый раз драйвер включился с задержкой примерно на 2-3сек, видимо должен был зарядиться конденсатор по питанию микросхемы, при последующих включениях задержки не было.

Испытание драйвера проводил 10-ваттным светодиодом, сначала без внешнего конденсатора. Напряжение на светодиоде было 11,46в при токе 0,85А. Но, учитывая значительную пульсацию выходного напряжения, я не очень надеялся на правдивые показания измерительных приборов.

Намного больше я стал доверять измерениям, когда припаял к драйверу первый попавшийся мне на глаза подходящий электролитический конденсатор:

При подключенном конденсаторе я получил следующие данные: напряжение на светодиоде 11,36в при токе 0,8а. При этом светодиод потреблял мощность 9,08вт, что, в принципе, меньше заявленной продавцом мощности драйвера, но не настолько мало, чтобы делать из этого проблему.

При работе драйвер нагревается, температура микросхемы порядка 62 градусов, трансформатора - около 70 градусов, самые горячие элементы - импульсные диоды на выходе преобразователя - около 85 градусов. Ну и для сравнения светодиод на радиаторе сам греется примерно до 72 градусов. Без внешнего конденсатора микросхема работает в более тяжёлом режиме, и нагревается сильнее, примерно до 72 градусов.

Пульсации напряжения не измерял (нечем), а приблизительно оценивал при помощи старинного ещё лампового осциллографа ЛО-70, у него сбоит синхронизация, поэтому сфотографировать картинку проблематично. Очевидны изменения уровня пульсаций при подключении внешнего кондёра, снижении входного напряжения, подключения пассивной нагрузки. Помех на радио и ТВ драйвер не наводит.

У продавца выставлена на продажу линейка драйверов светодиодов мощностью от 3 до 100вт. При этом электролитические конденсаторы по выходу сетевого выпрямителя имеются только у версий на 3 и 20вт, остальные такие же «пульсирующие» (см. наличие конденсатора по входу преобразователя):










Конечно, далеко не все разбираются в схемотехнике и могут по фото драйвера заключить, стоит ли его покупать или нет, тем более понять каким уровнем пульсаций выходного напряжения он может обладать. Поэтому хочу предостеречь народ (тех кто не планирует дорабатывать подобные драйверы установкой дополнительного конденсатора) от применения таких драйверов для освещения жилых помещений, особенно если напряжение в сети часто ниже номинального.